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Abstract

Why do countries and industries with large seasonal fluctuations also have large business

cycles? It is well known that seasonal fluctuations account for the bulk of total output

fluctuations, yet it is unknown whether seasonal fluctuations can trigger business cycles. Using

a procedure that allows for identification of seasonal innovations, I found that seasonal shocks

explain 50% of the business cycle in aggregate output. Such findings provide a novel and

powerful explanation for the observed strong correlation between seasonal fluctuations and

business cycles. The implication is that in addition to trying to determine whether it is

monetary, technology, or other types of shocks that cause business cycles, we should be

looking at what causes seasonality.
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1. Introduction

Can the tremendous rise and fall in consumption demand around Christmas time
generate business cycles? The question is intriguing. Conventional wisdom
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emphasizes demand shocks as a major source of the business cycle, yet the most
visible, most synchronized, and most frequently encountered demand shocks take
place seasonally. Output grows rapidly in the fourth quarter at an annual rate of
19%, and declines sharply in the first quarter at an annual rate of �32%: These
quarterly growth rates vary tremendously across years and are largely driven by
Christmas.1

Most research on the business cycle, however, has worked only with seasonally
adjusted data. Underlying this practice is the view that business fluctuations are
generated by fundamentally different sources than seasonal fluctuations. Such a view
is challenged by a stylized fact: Countries and industries with large seasonal cycles
also have large business cycles (e.g., Beaulieu et al., 1992).2

Despite strong empirical evidence suggesting that seasonal cycles and business
cycles may be closely related, the mechanism and the extent of interactions between
seasonal and business cycles have not been well understood. This is due to the lack of
effective methods for independently measuring and identifying seasonal components
of a time series. Traditional methods of measurement and identification (such as the
use of seasonal dummies to isolate seasonal components) are simply inadequate,
because they fail to take into account possible interactions between seasonal
fluctuations and business cycle fluctuations.

What is needed is a specification that allows for identification of seasonal versus
nonseasonal (business cycle) shocks. Without such an identification, it is impossible
to know, for example, how much of the total variations in output at the business
cycle frequency can be explained by disturbances at the seasonal frequency (e.g., by
the unanticipated aspect of Christmas demand).

Applying the methodology developed by Wen (2001) to form a specification that
allows for identification of seasonal shocks, I am able to uncover in this paper
important roles of seasonal disturbances in explaining the business cycle. I show that
innovations at the seasonal frequency explain about 50% of the variations in output
growth at the business cycle frequency. The same is also true for consumption and
investment. Such findings provide a powerful explanation for the observed strong
correlation between seasonal fluctuations and business cycles. They also offer a novel
explanation for Cochrane’s failure to find ‘‘large, identifiable, exogenous shocks’’ in
seasonally adjusted data to account for the bulk of the US business cycle (Cochrane,
1994).3

The underlying mechanism for the importance of seasonal shocks in explaining the
business cycle is not difficult to comprehend. Business cycles have characteristic

1The standard deviation of the fourth quarter growth rate, for example, is at least as large as the

standard deviation of the quarterly average growth rate in seasonally adjusted data, indicating a

substantial amount of seasonal uncertainty. Consumption is far more volatile than output at the seasonal

frequency. It grows at an annual rate of 28% in the fourth quarter and declines at an annual rate of �41%
in the first quarter (Barsky and Miron, 1989).

2Also see Canova and Ghysels (1994), Cecchetti et al. (1997), and Ghysels (1994) for more recent

findings regarding the interactions between seasonal cycles and the business cycle.
3When seasonal adjustment removes all seasonal fluctuations associated with seasonal shocks but not

the part of the business cycle due to seasonal shocks, it leaves a fraction of the business cycle unexplained.
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frequencies (e.g., the spectrum of US GDP growth has maximum power centered
around the 4–6 year cycle frequency),4 and these characteristic frequencies are
determined by the economy’s underlying endogenous propagation mechanisms.
Business cycles, however, become visible only when the economy is subject to
exogenous shocks. The seasonal disturbances are simply a special type of such
shocks that regularly hits the economy at an exogenously determined frequency—the
seasonal frequency. When the economy constantly absorbs a substantial volume of
seasonal disturbances, one should expect the economy to exhibit fluctuations not
only at the exogenously determined frequency (the seasonal frequency), but also at
the endogenously determined frequency (the characteristic business cycle frequency).

My method of identification implemented in this paper complements the method
proposed by Blanchard and Quah (B–Q 1989). The long-run restriction on impulse
responses imposed by Blanchard and Quah to identify the business cycle effects of
transitory demand shocks is essentially a restriction imposed on the power spectrum
of output growth at frequency zero. My method identifies the business cycle effects
of seasonal shocks by imposing restrictions at frequencies other than zero (i.e., at the
seasonal frequency).5,6

In what follows, I describe my identification method in Section 2. Section 3
provides an economic model to help interpret the identifying assumptions adopted in
Section 2. Section 4 reports the empirical estimation results for the US economy.
Sensitivity analyses are conducted in Section 5 and Section 6 concludes the paper.

2. Econometric methodology

Consider a world with two types of innovations, e1 and e2; where e1 is called a
nonseasonal innovation and e2 a seasonal innovation. These innovations are
assumed to be orthogonal i.i.d processes with standard deviation normalized to one.
It is also assumed that nonseasonal innovations have minimum contributions to
seasonal fluctuations and that seasonal innovations are primarily responsible for
seasonal fluctuations.7

4See Watson (1993) and Wen (1998).
5See Gali (1992, 1999), Cochrane (1994), and Gamber and Joutz (1993) for interesting applications of

the B–Q methodology. Also see Uhlig (2000) for discussions related to restrictions on impulse responses in

other ways.
6For using general equilibrium models to study the seasonal cycle, the readers are referred to Chatterjee

and Ravikumar (1992), Braun and Evans (1995, 1998), and Liu (2000).
7The above identifying assumption is based on the understanding that seasonal cycles are exogenous

and are caused primarily by external events such as Christmas and seasonal weather changes. Therefore,

nonseasonal innovations (e.g., the conventional business cycle shocks) should have little responsibility for

seasonal cycles. The orthogonality assumption, on the other hand, is based on the understanding that most

business cycle shocks such as technological innovations, oil price crises, or unexpected monetary policy

changes are nonseasonal and are independent of the season. It is arguable that some seasonal shocks are

correlated with business cycle shocks. In light of this, the so-called seasonal shocks identified in the paper

are only the ones that are orthogonal to business cycle shocks. Section 3 provides an economic model that

motivates these identifying assumptions.
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Let xt be a 2� 1 vector of jointly stationary time series with a moving average
representation:

xt ¼ a1ðLÞe1t þ a2ðLÞe2t; varðeÞ ¼ I : ð1Þ

Assuming that x1t is the variable under interest and x2t is the covariate functioning as
an instrument variable. The stationarity assumption of xt implies that it also has a
Wold-moving average representation:

xt ¼ b1ðLÞv1t þ b2ðLÞv2t; var ðvÞ ¼ S: ð2Þ

I am interested in recovering the structural representation (1) from the Wold
representation (2) which can be uniquely and consistently estimated via a bivariate
VAR: To achieve that, I need to find a mapping:

v ¼ A0e;

(where A0 is a 2� 2 real matrix with full rank) so that (2) can be written as

xt ¼ ½b1ðLÞ b2ðLÞ�A0

e1t
e2t

" #
: ð3Þ

Given A0; the structural representation (1) can be completely recovered from the
data with the equations

½a1ðLÞ a2ðLÞ� ¼ ½b1ðLÞ b2ðLÞ�A0;

and

e ¼ A�1
0 v:

Since v ¼ A0e; the data impose the following identifying restrictions on A0:

S ¼ A0A
0
0: ð4Þ

Restriction (4) has only 3 independent equations but 4 unknowns (since S is
symmetric), hence it is not sufficient for identifying the four elements of A0: One
more restriction is required to identify A0: This gives me a degree of freedom to
define the dynamic nature of the innovations involved.

Blanchard and Quah (B–Q 1989) utilize that degree of freedom to identify a
‘‘demand shock’’ ðe1Þ and a ‘‘supply shock’’ ðe2Þ; by specifying that demand shocks
have no long-run effect on x1: In terms of the structural representation (1), that
restriction means the first element in a1ð1Þ is zero:

a11ð1Þ ¼ 0:

In terms of the Wold representation (2), that restriction also implies:

½A0�11b11ð1Þ þ ½A0�21b21ð1Þ ¼ 0; ð5Þ

where bj1 is the first row element in the vector bj : Obviously, conditions (5) and (4)
together uniquely determine A0:

From the point of view of spectral analysis, the B–Q (1989) identifying scheme
(restriction 5) amounts to assert that a demand shock is an innovation that has
minimum contributions to the variance of x1 at frequency zero, whereas a supply

Y. Wen / Journal of Monetary Economics 49 (2002) 1289–13141292



shock is an innovation that has maximum contributions to the variance of x1 at
frequency zero. To see this, notice that the Fourier transform of specification (2) (i.e.,
the power spectrum) is given by:8

f ðe�ioÞ ¼ ½b1ðe�ioÞ b2ðe�ioÞ�S½b1ðeioÞ b2ðeioÞ�0

¼ ½b1ðe�ioÞ b2ðe�ioÞ�A0A
0
0½b1ðe

ioÞ b2ðeioÞ�0:

The spectrum of the first variable in x is given by the upper left-hand entry:

j½A0�11b11ðe
�ioÞ þ ½A0�21b12ðe

�ioÞj2 þ j½A0�12b11ðe
�ioÞ þ ½A0�22b12ðe

�ioÞj2; ð6Þ

in which the first term is the partial spectrum of x1 with respect to the innovation e1;
and the second term is the partial spectrum of x1 with respect to the innovation e2:

The identifying assumption that e1 has minimum contributions to the power
spectrum of x1 at a frequency o implies that the partial spectrum of x1 with respect
to e1 is minimized at o: Namely, I can choose ½A0�11 to solve:

min
½A0�11

f11ðe�ioÞ ¼ j½A0�11b11ðe
�ioÞ þ ½A0�21b21ðe

�ioÞj2:

The spectrum is nonnegative at each frequency o; hence the objective function is
convex with respect to ½A0�ij : The solution is given by

½A0�11 ¼ �½A0�21
½b11ðe�ioÞb21ðeioÞ þ b21ðe�ioÞb11ðeioÞ�

2jb11ðe�ioÞj2

� �
: ð7Þ

Let o ¼ 0; Eq. (7) simplifies to

½A0�11 ¼ �½A0�21
b21ð1Þ
b11ð1Þ

; ð8Þ

which is identical to (5). Therefore, the B–Q (1989) identification scheme can be
interpreted as a special case of (7).9

Eq. (7) can also be implemented to identify the business cycle effects of seasonal
shocks. Let y denote an aggregate US time series under interest (e.g., the growth rate
of real GDP), and r denote a covariate that is ‘‘stationary’’ at the seasonal
frequency.10 In addition, let x be the vector ðy; rÞ0 and e be the vector ðe1; e2Þ

0; where e1

8The power spectrum (spectral density function) decomposes the total variance of a stationary time

series into ‘‘variance density distributions’’ across frequencies. The power at each frequency measures the

contribution of cycles at that frequency to the total variance.
9Notice that the minimized spectral density may not necessarily be zero. It is zero, for example, at the

zero frequency; because when o ¼ 0; we have e�io ¼ 1; hence the function, ½A0�11b11ðe
�ioÞ þ

½A0�21b21ðe
�ioÞ; and its conjugate are both real. Consequently, the minimum can be found simply by

setting
ffiffiffiffiffiffi
f11

p
¼ ½A0�11b11ð1Þ þ ½A0�21b21ð1Þ ¼ 0:

When oa0; however, the expression, ½A0�11b11ðe
�ioÞ þ ½A0�21b21ðe

�ioÞ; is generally a complex quantity.

The only way to ensure a zero value for f11ð�Þ at an arbitrary frequency o is to have ½A0�11 ¼ ½A0�21 ¼ 0;
which results in overidentification.

10As in B–Q (1989), the covariate must be stationary with respect to the frequency at which identifying

restrictions are imposed. Since my identifying restriction requires that the non-seasonal innovation has

minimum effects at the seasonal frequency, a sensible covariate is a seasonally unadjusted series that does

not have seasonal unit root in it (i.e., being ‘‘stationary’’ at the seasonal frequency). Empirical studies

found that the US interest rates and prices have very little seasonal component (e.g., see Miron, 1996), I
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denotes nonseasonal innovations and e2 denotes seasonal innovations. The
stationarity assumption of x ensures the structural moving average representation
(1) and the Wold-moving average representation (2), where the later can be obtained
by first estimating and then inverting the vector autoregressive representation of x in
the usual way.11 Taking the Fourier transform of the Wold representation and
choosing ½A0�11 to minimize the partial spectrum of y with respect to e1 at the
seasonal frequency o ¼ p=2 (for quarterly data) gives

½A0�11 ¼ �½A0�21
b11ðe�ðp=2ÞiÞb21ðeðp=2ÞiÞ þ b21ðe�ðp=2ÞiÞb11ðeðp=2ÞiÞ

2jb11ðe�ðp=2ÞiÞj2

� �
; ð9Þ

which is a special case of (7) with o ¼ p
2
: The system of equations that can be used to

solve for the four elements in A0 is then given by the identifying restriction (9) and
the relation A0A

0
0 ¼ S:12

With the knowledge of A0; I can then examine the business cycle effects of seasonal
innovation e2 using representation (6), which decomposes the total spectrum of y
into two parts: the part due to nonseasonal shocks (the first term) and the part due to
seasonal shocks (the second term). If seasonal innovations are important for causing
business cycles in output, then at the business cycle frequencies the partial spectrum
of y with respect to e2 should constitute a significant fraction of the total spectrum of
y at those frequencies.

3. Interpretation

My interpretation of innovations with minimal effects at the seasonal frequency as
nonseasonal shocks (e.g., conventional business cycle shocks), and of innovations
with maximum effects at the seasonal frequency as being seasonal shocks that may
also have effects at the business cycle frequency is motivated by a simple multiplier-
accelerator model of the business cycle (Samuelson, 1939, and Hicks, 1950).13 The

(footnote continued)

choose the 3-month T bill rate as the covariate. The results are robust when the CPI price index is used as

the covariate.
11The assumption that seasonalities can be modeled (or approximated) as indeterministic processes is

not 100% realistic, but it can nevertheless serve as a benchmark for further investigations. Section 5 will

investigate the sensitivity and robustness of this assumption.
12When seasonal cycles also exist at harmonic frequencies, the identifying restriction (9) can be modified

to:

½A0�11 ¼ �½A0�21

P
j ½b11ðe

�ð2pj=4ÞiÞb21ðe�ð2pj=4ÞiÞ þ b21ðe�ð2pj=4ÞiÞb11ðe�ð2pj=4ÞiÞ�

2
P

j ½jb11ðe�ð2pj=4ÞiÞj2�
;

 !

where j ¼ 1; 2; indicating that nonseasonal shocks have minimal effect at both the fundamental frequency,

p=2; and the harmonic frequency, p: See Wen (2001) for a general treatment on the issue.
13For simplicity, I have adopted an ad hoc business cycle model. But the structural equations in the

model can be interpreted as reduced-form equilibrium decision rules derived from a rational expectations

general equilibrium model with fully specified preferences and technologies. I believe that the mechanism

of interactions between seasonal cycles and business cycles is well captured by this simple model. At the
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model has three equations:

Yt ¼ Ct þ It þ Gt; ðAÞ

Ct ¼ a0 þ aYt�1 þ St; ðBÞ

It ¼ bðYt�1 � Yt�2Þ: ðCÞ

The variables Y ;C; I ;G denote output, consumption, investment, and government
spending respectively. The time period is assumed to be one quarter. Eq. (A) is the
goods market equilibrium condition with Gt as an aggregate demand shock (the
nonseasonal business cycle shock). Eq. (B) is a simple consumption function where
a0X0 is autonomous consumption, aAð0; 1Þ is the marginal propensity to consume,
and St is a seasonal forcing variable that impacts consumption demand (e.g., the
Christmas effect). Eq. (C) describes investment behavior as responding primarily to
changes in last period aggregate demand with the accelerator coefficient b > 0:

To close the model, I need to specify how Gt and St evolve. As an illustration, I
assume that:

Gt ¼ egt;

St ¼ �rðSt�1 þ St�2 þ St�3Þ þ est; 0orp1; ð10Þ

where eg and es are serially uncorrelated, orthogonal innovations to the nonseasonal
and seasonal impulses, respectively.14 Solving for output in the above system gives:15

Yt ¼ ðaþ bÞYt�1 � bYt�2 þ Gt þ St;

or

ð1� l1LÞð1� l2LÞYt ¼ Gt þ St; ð11Þ

where L is the lag operator, and l1 and l2 are the characteristic roots of Eq. (11)
satisfying

l1 þ l2 ¼ aþ b;

l1l2 ¼ b:

It is well known that for reasonable values of a and b; the above system exhibits
dampened endogenous business cycles (i.e., the characteristic roots l1 and l2
form a complex conjugate pair, a7bi). For example, when a ¼ b ¼ 0:9; we have

(footnote continued)

end of this section, I will allow forward looking behavior into the model and show that the insight gained

from this model carries over to more general settings.
14There are many different ways to model seasonalities. An alternative model for the seasonal variable is

St ¼ rSt�4 þ est; 0orp1: In this section which model to choose does not matter, but the indeterministic

model in Eq. (10) seems to capture the seasonalities in the US data quite well. My identifying procedure as

well as the empirical results obtained in the rest of the paper, however, do not require knowledge about the

true model of the seasonalities, except the assumptions that St possesses stochastic cycles at the seasonal

frequency and has a well-defined spectrum. See Section 5 for the case of deterministic seasonal cycles.
15For simplicity, I have set a0 ¼ 0:
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l ¼ 0:970:3i; implying dampened oscillations at frequency

o ¼
1

2p
cos �1 0:9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:92 þ 0:32
p

 !
C0:05 ðcycle per quarterÞ;

or a periodicity (average cycle length) of 20 quarters per cycle.
Let the structural parameters a and b be such that the characteristic roots of the

model are a7bi: To see how business cycle fluctuations in output Y depend both on
the nonseasonal and seasonal innovations, I rewrite Eq. (11) as

Yt ¼
1

ð1� l1LÞð1� l2LÞ
egt þ

1

ð1� l1LÞð1� l2LÞð1þ rLþ rL2 þ rL3Þ
est

�BðLÞegt þ BðLÞSðLÞest; ð12Þ

where BðLÞ � ½ð1� l1LÞð1� l2LÞ��1 represents the endogenous business cycle
propagation mechanism and SðLÞ � ð1þ rLþ rL2 þ rL3Þ�1 represents the exogen-
ous propagation mechanism that transmits the impact of seasonal innovations ðesÞ in
a manner that mimics seasonal cycles.

The corresponding power spectrum of Y is given by

Fyðe�ioÞ ¼
s2g

jð1� l1 e�ioÞð1� l2 e�ioÞj2

þ
s2s

jð1� l1 e�ioÞð1� l2 e�ioÞj2j1þ r e�io þ r e�2io þ r e�3ioj2

�Bðe�ioÞs2g þ Bðe�ioÞSðe�ioÞs2s ; ð13Þ

where

Bðe�ioÞ �
1

jð1� l1 e�ioÞð1� l2 e�ioÞj2
;

and

Sðe�ioÞ �
1

j1þ r e�io þ r e�2io þ r e�3ioj2
:

Eq. (12) is the moving-average, time-domain representation of the dynamics of
output, with the first component showing the dynamic effects of the nonseasonal
innovation on Y ; and the second component showing the dynamic effects of the
seasonal innovation on Y : Eq. (13) is the frequency-domain analogue of the
decomposition.

Both representations clearly indicate that fluctuations in output at the
characteristic business cycle frequency, o ¼ cos �1ða=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þ; are determined by

the model’s endogenous propagation mechanism (i.e., by the business cycle
polynomial Bð�Þ), and that fluctuations in output at the seasonal frequency are
determined by the exogenous propagation mechanism (i.e., by the seasonal cycle
polynomial Sð�Þ). Hence, the power spectrum of Y has two maxima (spectral peaks).
One of them centers at the business cycle frequency o ¼ cos�1ða=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þ; at

which the function, Bðe�ioÞ ¼ 1=jð1� l1 e�ioÞð1� l2 e�ioÞj2; attains its maximum;
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and the other one centers at the seasonal frequency, o ¼ p=2; at which the function,
Sðe�ioÞ ¼ 1=j1þ r e�io þ r e�2io þ r e�3ioj2; attains its maximum.16

Eqs. (12) and (13) also indicate clearly that the dynamic impact of the nonseasonal
innovation ðegÞ is not propagated by the seasonal factor Sð�Þ; whereas the dynamic
impact of the seasonal innovation ðesÞ is propagated both by the seasonal factor Sð�Þ
and by the business cycle factor Bð�Þ: In other words, the nonseasonal disturbance
ðegÞ can generate fluctuations in Y only through the endogenous propagation
mechanism: Bð�Þ: But the seasonal disturbance ðesÞ can generate fluctuations in Y

through two different propagation mechanisms: Bð�Þ and Sð�Þ; the first of which
generates stochastic business cycles, and the second generates stochastic seasonal
cycles.17

Consequently, compared with es; the nonseasonal innovation ðegÞ has little
contributions to the spectrum of output at the seasonal frequency. In fact, the ratio
of the partial spectra of Y with respect to eg and es is given by:

1

Sðe�ioÞ

s2g
s2s
;

which attains a minimum at the seasonal frequency o ¼ p=2:18

On the other hand, the seasonal innovation es not only has maximum
contributions to the spectrum of Y at the seasonal frequency, but also has
potentially a very large contribution to the spectrum of Y at the business cycle
frequency. This is so because the partial spectrum of Y with respect to es is given by

Bðe�ioÞSðe�ioÞs2s ;

which has one maximum at the seasonal frequency o ¼ p=2 (at which the seasonal
factor Sðe�ioÞ attains its maximum), and another maximum at the characteristic
business cycle frequency o ¼ cos�1ða=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þ (at which the business cycle factor

Bðe�ioÞ attains its maximum).
Hence, the economic model as represented by Eq. (13) clearly satisfies the

identifying restrictions of the previous section. Namely, with respect to the seasonal
frequency p=2; eg has minimal impact on Y and es has maximal impact on Y :

The dynamic implications of (13) can be better appreciated by a graphic
illustration. Fig. 1 plots the total spectrum and the partial spectrum of Y with
respect to es as defined in (13). The parameterization adopted is given by: a ¼ b ¼
0:9;r ¼ 0:97; and sg ¼ 1

4
ss ¼ 1: The picture shows that the total spectrum of output

16The power spectrum decomposes the total variance of a stationary time series into contributions

across frequencies. If a stochastic time series contains characteristic cycles at frequency o; then its

spectrum will exhibit a peak (concentration of power) at frequency o; indicating large contributions from

the characteristic cycle to the total variance of that time series.
17This means that the accelerator effects of seasonal changes in aggregated demand can carry over to

periods beyond the seasonal frequency.
18This is so because Sðe�ioÞ attains its maximum at the seasonal frequency o=2: Note that the minimum

does not have to be zero. In empirical applications, the minimum is determined by the nature of the data

series used. See also footnote 8.
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(dashed lines) has two peaks, one centering at the seasonal frequency (o ¼ 0:25
cycles per quarter), another centering at the business cycle frequency (o ¼ 0:05 cycles
per quarter). Hence fluctuations at these two frequencies are the two major
contributors to the total variance of output (which is the total area underneath the
spectral density function).

The single most important and interesting feature to notice in Fig. 1, however, is
that the partial spectrum of output with respect to the seasonal innovation (solid
line) dictates the shape of the total spectrum (i.e., the two spectral peaks). It shows
that seasonal shocks explain not only virtually all of the variance in output around
the seasonal frequency o ¼ 0:25; but also a substantial fraction of the variance of
output around the business cycle frequency o ¼ 0:05; leaving nonseasonal shocks to

Fig. 1. Spectral decomposition of output in the theoretical business cycle model. Dashed line represents

the total spectrum under both shocks. Solid line represents the partial spectrum under the seasonal shock

only.
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explain only a very limited portion of the business cycle in output.19 Therefore, the
model clearly illustrates that innovations primarily responsible for seasonal
fluctuations can also be the culprit of business cycles.

One potential objection to using the above model for helping interpret my
identifying assumptions is the lack of forward looking behavior. I show below that
such omission is not essential. Suppose the investment equation is modified to

It ¼ bðYt�1 � Yt�2Þ þ gEtðYtþ1 � YtÞ;

so that investment depends also on the expected changes in future income. The law
of motion for expected output is then given by a third order expectations difference
equation:

1�
1þ g
g

Lþ
aþ b
g

L2 �
b
g
L3

� �
L�1Et�1Yt ¼ �

1

g
Et�1Xt;

where Xt ¼ Gt þ St: Factorization gives

ð1� l1LÞð1� l2LÞð1� l3LÞL�1Et�1Yt ¼ �
1

g
Et�1Xt:

It can be shown that for suitable parameter values, the equation has one explosive
root and a pair of stable complex roots.20 Let l3 be the explosive root, I can solve for
the expected income Et�1Yt forward to obtain

ð1� l1LÞð1� l2LÞEt�1Yt ¼
1

gl3

XN
j¼0

1

l3

� �j

Et�1Xtþj :

This also gives EtYtþ1:
Substituting out EtYtþ1 in the investment function then gives the following law of

motion for output:

1�
aþ b� gl1l2

1þ g� gðl1 þ l2Þ
Lþ

b
1þ g� gðl1 þ l2Þ

L2

� �
Yt

¼
1

1þ g� gðl1 þ l2Þ
Xt þ

1

l3

XN
j¼0

1

l3

� �j

EtXtþ1þj

 !
;

where the left-hand side can be factorized as ð1� *l1LÞð1� *l2LÞYt:
21 Hence, output

follows

Yt ¼
Z

ð1� *l1LÞð1� *l2LÞ
Xt þ

1

l3

XN
j¼0

1

l3

� �j

EtXtþ1þj

 !
: ð14Þ

The endogenous business cycle propagation mechanism is therefore given by a

19Of course, the variance ratio of the two innovations matter a lot. But the point is that a larger seasonal

cycle does imply a larger business cycle.
20For example, when a ¼ b ¼ 0:9; and g ¼ 0:1; we have l1 ¼ 0:931þ 0:344i; l2 ¼ 0:931� 0:344i; and

l3 ¼ 9:12:
21 In this particular example, it happens that *li ¼ li ; i ¼ 1; 2: The implied business cycle frequency for

quarterly time series is about 0.56 cycles per quarter or 18 quarters per cycle.
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similar second order polynomial as before:

*BðLÞ ¼
1

ð1� *l1LÞð1� *l2LÞ
:

Since Xt ¼ Gt þ St; we see that the nonseasonal impulse Gt and the seasonal impulse
St generate similar business cycles since they are both propagated by the same
internal propagation mechanism specified in Eq. (14).22

4. Estimation

This section estimates the business cycle effects of seasonal innovations for a set of
post war US aggregates using the identifying procedure outlined in Section 2. Since
the US housing construction sector is most volatile both at the business cycle
frequency and at the seasonal cycle frequency, and many related variables are
stationary without detrending (see Fig. 2), I report first my estimation results for
housing starts for the US economy (1947:1–1996:2).23 The covariate used is the 3-
month T bill rate (see footnote 9).

Fig. 3 shows the estimated dynamic responses of housing starts to innovations in
nonseasonal and seasonal impulses (the time period is a quarter). The left window
shows the response of housing starts to a nonseasonal innovation. It exhibits the
typical hump-shaped pattern, reflecting the endogenous business cycle propagation
mechanism. The right window shows the response of housing starts to a seasonal
innovation. It exhibits large seasonalities as well as business cycle frequency
movements.24

At the impact period, the magnitude of the response to a seasonal innovation is
about 80 times larger than the response to a nonseasonal innovation, indicating that
housing starts are extremely sensitive to seasonal disturbances and relatively
insensitive to nonseasonal disturbances. Both type of responses show hump-shaped
transition patterns at the business cycle frequency in returning to the steady state.
The maximum effect of nonseasonal shocks, however, is reached only 5 quarters
after the impact, indicating a delayed multiplier effect. With respect to seasonal
shocks, the low-frequency effect decays gradually (intertwined with seasonal cycles)

22 In other words, taking the forward looking expectations into account, if innovations in Gt can

generate the business cycle, so do innovations in St:
23 I use stationary data first to conduct my analyses, as it is well known that pre-filtering using either the

first difference filter or the HP filter may cause distortions (see Cogley and Nason, 1995). In the empirical

analyses, all variables are logged and 8 lags are used in the estimation.
24An indeterministic model of seasonality implies that the seasonal cycle can be observed only after the

economy is subject to random shocks at the seasons. A deterministic model of seasonality, on the other

hand, implies that the seasonal cycle can be observed even in the steady state without seasonal shocks. I

have adopted the indeterministic approach in my identifying procedure. Consequently, the term ‘‘seasonal

shock’’ is defined as innovations that can trigger the seasonal cycle, and ‘‘nonseasonal shock’’ is defined as

innovations that do not trigger the seasonal cycle. Section 5 conducts a sensitivity analysis with regard to

this assumption. It shows that taking deterministic seasonal cycles into consideration does not change my

empirical results significantly.
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with its trough being reached only 10 quarters after, indicating that seasonal shocks
do have a strong business cycle effect.

Fig. 4 shows the time-series decomposition for housing starts. The top window
shows the time series representation of housing starts in the absence of seasonal
disturbances. The bottom window shows the time series representation of housing
starts due to seasonal disturbances. It is clear from the top window that housing
starts would have been much less volatile if the seasonal shocks were absent. But
most importantly, the bottom window shows that the business cycle would still be
present in housing starts even without the business cycle shocks!

To better appreciate the business cycle effect of seasonal shocks, Fig. 5 presents
the spectral decomposition of the total variance of housing starts across frequencies.
The total spectrum (short dashed lines) has two peaks: one at the seasonal frequency
(0:25 cycles per quarter or 4 quarters per cycle) and another at the business cycle
frequency (0:035 cycles per quarter or 28 quarters per cycle). Looking at the partial
spectrum with respect to seasonal shocks (solid line), it is very striking to see how

Fig. 2. US housing starts (1947:1–1996:2) (Source: CITIBASE).

Y. Wen / Journal of Monetary Economics 49 (2002) 1289–1314 1301



(a) (b)

Fig. 3. Impulse responses of housing starts to different shocks.
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much the seasonal shocks can contribute to the business cycle movement in housing
starts: an exceptionally large fraction of power around the business cycle frequency is
due to seasonal shocks! Across all frequencies, seasonal shocks explain 81% of the
total variance in housing starts. Around the business cycle frequencies (6–40 quarters
per cycle), at which the conventional business cycle shocks are expected to dominate,
seasonal shocks still explain about 69% of the total variance of housing starts.

Now I turn to the case of real GDP, consumption and investment.25 Fig. 6 shows
the time series of real GDP growth for the US economy (1947:1–1987:4). It is clear in
the picture that seasonal fluctuations completely dominate the business cycle in
output. What is not clear from Fig. 6, however, is to what degree business cycles in
output are due to seasonal fluctuations.

To answer the question, Figs. 7 and 8 show the decomposition of output growth in
time and in frequency respectively.26 The top window in Fig. 7 shows the time-series

Fig. 4. Time series decomposition of housing starts (Top: Fluctuations absent seasonal shocks. Bottom:

Fluctuations due to seasonal shocks).

25The price index used for deriving real quantities is seasonally unadjusted CPI. All variables (including

the instrument) are logged and then first differenced. Six lags are included in the VARs.
26Fig. 8 shows that the power spectrum of GDP growth has another peak at the two-period cycle

frequency o ¼ 0:5; indicating harmonic cycles. In such a case, the minimization program should be solved

with respect to a sum of all harmonic frequencies (see Wen (2001) for detailed discussions). It turns out,
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representation of GDP growth in the absence of seasonal innovations. The bottom
window in Fig. 7 shows the time series of GDP growth due to seasonal disturbances.
In particular, Fig. 8 (where the bottom window is a zoom-in) shows the effects of
seasonal shocks across frequencies. There we see a similar picture to that of housing
starts. Firstly and not surprisingly, the largest contributor to the total spectrum of
GDP growth is the seasonal disturbance (solid line in the bottom window).27

Conventional business cycle disturbances explain only 6% of the total power
spectrum of GDP growth (dashed lines).

What is surprising and striking are the actions around the business cycle frequency
(between o ¼ 0:025 and o ¼ 0:15; corresponding to 6–40 quarter cycles), where

Fig. 5. Spectral decomposition of housing starts.

(footnote continued)

however, minimizing the impact of nonseasonal shocks with respect to the seasonal frequency in our case

is good enough to induce a minimum at the two-period cycle frequency.
27The spectral peak at o ¼ 0:5 indicates harmonic cycles.
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seasonal disturbances still explain about 48% of the variance in GDP growth,
leaving the nonseasonal shocks to explain only about half of the business cycles in
GDP. In addition, the spectral decomposition at the zero frequency indicates that
seasonal disturbances also have a dominant long-run effect on output. The results
are very similar for the case of consumption and investment. They are summarized in
Table 1, where we see that with respect to fluctuations at the business cycle frequency
(6–40 quarters per cycle), seasonal shocks explain about 53% of both consumption
growth and investment growth.

Table 1

Contributions of seasonal shocks to variance (%)

Variables All frequencies Business cycle frequencies

y 0.94 0.48

c 0.94 0.53

i 0.95 0.53

Fig. 6. Real GDP growth (1947:1–1987:4).
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To summarize, despite the limited number of data series examined, I found
consistent empirical results suggesting that seasonal shocks have surprisingly large
contributions to business cycles in the US economy. These results are generally
robust to the covariate used. For example, when the GDP price index was used
instead as the covariate, I found similar (even slightly larger) contributions to
business cycles by seasonal shocks.

5. Sensitivity analyses

My empirical results so far are based on the assumption that seasonal cycles in the
US data are indeterministic, so that they can be modeled as ARMA processes. This
is an extreme assumption. There are probably both deterministic and indeterministic
seasonal cycles in the US data. If deterministic seasonal cycles do exist, it may be
desirable to remove them prior to applying the identification method, because
deterministic seasonals may mask the true contributions of indeterministic seasonals
(which are the source for extracting seasonal shocks). One potential problem is that,
however, there does not exist a priori knowledge regarding the exact composition of
deterministic and indeterministic seasonals. For the sake of argument, I pretend that

Fig. 7. Time series decomposition of GDP growth (Top: Fluctuations absent seasonal shocks. Bottom:

Fluctuations due to seasonal shocks).
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all the forecastable component in seasonal cycles are due to deterministic seasonal
movement. Hence, I conduct the following sensitivity analyses.

Prior to applying my procedure to identifying seasonal shocks, I remove the
‘‘deterministic’’ seasonals by regressing the growth rates of output, consumption,
and investment on seasonal dummies. If such adjustment substantially reduces the
estimated contribution of seasonal shocks to the business cycle, it inevitably casts
serious doubt on the reliability of my empirical results.

Fig. 9 plots the decomposition of GDP growth into a ‘‘deterministic’’ component
(bottom window) and the residual (‘‘indeterministic’’) component (top window). It
shows that seasonal dummies are able to extract a substantial fraction of GDP
fluctuations. Despite the attribution of a very large portion of GDP growth to the
‘‘deterministic’’ component, however, we are still left with a fairly large amount of
seasonal fluctuations that are not attributable to deterministic seasonals. This is
clearly seen in Fig. 10, which shows the time-domain decomposition of the dummy-
adjusted GDP growth into components due to seasonal and nonseasonal shocks
respectively. The part of GDP growth due to nonseasonal business cycle shocks (top
window in Fig. 10) looks almost identical to that in Fig. 7. The part of GDP growth
due to seasonal shocks (bottom window in Fig. 10), although quite different from
that in Fig. 7, still has detectable seasonal movement at the seasonal frequency.

The picture becomes even sharper when looking at the spectrum of the dummy-
adjusted GDP growth in Fig. 11 (top window). There one sees a large peak at the

Fig. 8. Spectral decomposition of GDP growth (the bottom window zooms in the top window).

Y. Wen / Journal of Monetary Economics 49 (2002) 1289–1314 1307



seasonal frequency, indicating that these seasonal fluctuations are not forecastable
by seasonal dummies.28 The bottom window of Fig. 11 shows the spectral
decomposition of the variance of the dummy-adjusted GDP growth into its seasonal
and nonseasonal components due to seasonal and nonseasonal shocks. It shows that
the part due to seasonal shocks (solid lines) still account for a large portion (about
49%) of the variations in the dummy-adjusted GDP growth around the business
cycle frequencies. This implies that seasonal adjustment by seasonal dummies has
very little effect on my identification method that identifies the business cycle effects
of seasonal shocks.

The adjustment by seasonal dummies does, however, change the point estimates of
contributions to the business cycle of seasonal shocks for the other data series. Over
the business cycle frequencies, for example, the contribution of seasonal shocks to
the variance of consumption growth was 53% for the pre-adjusted series. It is now
59% for the post-adjusted series. The contribution of seasonal shocks to the variance
of investment growth was 53% for the pre-adjusted series. It is now 63% for the
post-adjusted series (see Table 2).

Fig. 9. Indeterministic and deterministic component in GDP growth.

28Comparison between Fig. 10 and Fig. 8, however, shows that the bulk of the seasonal cycle has been

removed by deterministic seasonal dummies.
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Fig. 10. Time series decomposition of dummy-adjusted GDP growth (Top: Fluctuations absent seasonal

shocks. Bottom: Fluctuations due to seasonal shocks).

Fig. 11. Spectral decomposition of dummy-adjusted GDP growth (Top: Total spectrum. Bottom:

Decomposed spectrum).
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Using Monte Carlo, I show that these changes are due to estimation errors. To be
more specific, I generate three artificial time series, y1t; y2t; and zt according to the
base-line economic model presented in Section 3:

y1t ¼ðaþ bÞy1t�1 � by1t�2 þ gt þ st;

y2t ¼ y1t þ xt;

zt ¼ ðaþ bÞzt�1 � bzt�2 þ gt þ 0:1st;

where gt and st represent respectively the business cycle shocks and the seasonal cycle
shocks as specified in Section 3,29 and xt is a deterministic seasonal component
generated using seasonal dummies.30 We can interpret the series y1t and y2t as two
different series of GDP growth with the difference that y2t has a deterministic
seasonal component. The series zt is used as the covariate, the 3 month T bill rate.31

My task is three-fold. First, I want to know whether my estimation procedure
correctly captures the true contribution to the business cycle by seasonal shocks.
Secondly, I want to know whether adjustment by seasonal dummies on y1t would
cause distortions to the estimated contribution to the business cycle from seasonal
shocks, when there is no deterministic seasonals in the original series. And lastly, I
want to know whether my estimation procedure gives biased results when the
original time series contains both deterministic and indeterministic seasonal cycles
ðy2tÞ:

The first aspect of the task can be accomplished simply by applying my procedure
to the series y1t: The true contribution to the business cycle by seasonal shocks is
55% by construction. The second aspect of the task can be accomplished by
comparing the contributions to the business cycle from seasonal shocks in the two
series y1t and #y1t; where the later is the adjusted y1t using deterministic seasonal
dummies. The Third aspect of the task can be accomplished by comparing the
contributions to the business cycle of seasonal shocks in the two series y2t and #y2t;
where the later is the adjusted y2t using deterministic dummies.

Table 2

Contributions of seasonal shocks to variance (%) (for seasonal-dummy adjusted data series)

Variable All frequencies Business cycle frequencies

y 0.77 0.49

c 0.88 0.59

i 0.81 0.63

29Namely, the specifications used to generate Fig. 1.
30The dummy coefficients in xt are calibrated using their counter parts of actual GDP growth. I have

increased the dummy coefficients proportionally so that the magnitude of xt is sufficiently large to

significantly affect the seasonal component of y1t:
31Since the covariate should have relatively less seasonality in it, I attach a small weight to st in

constructing zt: Also see footnote 10.
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I generate 500 samples for each time series in each Monte Carlo analysis, with
sample size of 164 observations (¼ the US sample size). I compute my statistics by
applying the identification procedure to each sample created. Table 3 summarizes
the results, where the m’s are the means of the point estimates and s0s are the
standard errors, all numbers referring to the percentage contribution of seasonal
shocks to the variance of yjt ðj ¼ 1; 2Þ at the business cycle frequencies (6–40 quarters
per cycle).

Several features of Table 3 are worth mentioning. First of all, the identifying
procedure captures the truth very well. The true value is 0.55 by construction, my
estimate is 0.54 (the upper left corner of Table 3). Secondly, adjustment by
deterministic dummies has no significant distortionary effect on all of the series
considered. The estimated contribution of seasonal shocks to the business cycle in
y1t; for example, is 54% before the adjustment; and it is 50% after the adjustment by
seasonal dummies. Thirdly, treating deterministic seasonal cycles as indeterministic
causes no significant distortion to the estimated true contribution of seasonal shocks
to the business cycle. The estimated contribution of seasonal shocks to the business
cycle in y2t; for example, is 50% without the adjustment by seasonal dummies; and it
is also about 50% after the adjustment by seasonal dummies. And lastly, the
estimation errors are by no means small, making my estimates imprecise to a certain
degree. This is largely due to the small sample size used, however.

Overall, these Monte Carlo experiments provide strong support to my empirical
results obtained in Section 4. Seasonal shocks do appear to account for a substantial
fraction of the US business cycle, regardless whether the data are adjusted by
seasonal dummies or not. An important caveat is in order, however. My sensitivity
analyses by no means imply that any seasonal adjustment (such as the X-11
procedure used by the US government) will have no serious distortions to the
business cycle properties of a times series as in the case of seasonal dummies (e.g., see
Sargent, 1987, pp. 336–342). In fact, large adverse effects could result. In particular,
if a seasonal adjustment procedure is able to remove completely the seasonal
component of a time series, especially the indeterministic seasonal component, it
then becomes virtually impossible to identify the source and the volume of seasonal
shocks, because there would be little seasonal frequency variations left for
identifying seasonal innovations, still less to evaluate the contribution of seasonal

Table 3

Contributions of seasonal shocks to business cycle ðtruth ¼ 0:55Þ

Pre-adjustment Post-adjustment

Series y1t
my1 0.54 m #y1

0.51

sy1 (0.18) s #y1 (0.20)

Series y2t
my2 0.50 m #y2

0.51

sy2 (0.19) s #y2 (0.20)

Y. Wen / Journal of Monetary Economics 49 (2002) 1289–1314 1311



shocks to the business cycle. In that case, the part of the business cycle that is
originally caused by seasonal shocks would either appear to be unexplainable or be
attributed (mistakenly) to nonseasonal shocks.32

The implication that removing the ‘‘deterministic’’ seasonal cycles has little
distortionary effect in the current context is an important issue that is worth further
theoretical investigations. Christiano and Todd (2000) examines this issue using
artificial data generated from a simple general equilibrium business cycle model with
seasonality. They show that removing deterministic seasonal fluctuations using
seasonal dummies does not cause serious distortions to the business cycle properties
of the original time series, when the true data generating process has only
deterministic seasonal component. However, they find larger discrepancies between
seasonal and aseasonal models when the seasonal is indeterministic than when it has
a deterministic component.

6. Conclusions

By developing a specification that allows for identification of seasonal versus
nonseasonal shocks, It is made possible in this paper a quantitative evaluation of the
contribution of seasonal shocks to the business cycle. Under the identification
scheme, seasonal shocks are found accounting for a substantial fraction of the
business cycles in the US.

At first glance the finding that seasonality is so important for the business cycle
perhaps seems both astonishing and puzzling. However, pondering it in light of the
economic model provided in Section 3 makes it obvious that seasonal shocks ought
to be able to have a significant effect on business cycles. This is so because seasonal
shocks are by far the most frequent, most synchronized, and on average the severest
disturbances among all. What type of economies (or their underlying propagation
mechanisms) could possibly be immune to such shocks? Perhaps none.

The empirical findings provide a powerful explanation to the empirical puzzle that
countries and industries with large seasonal cycles also have large business cycles.33

They also suggest that models relying heavily on technology shocks to explain
business cycles are misspecified,34 and that theories, as well as government policies

32 I think this is perhaps the reason behind Cochrane’s failure to find ‘‘large, identifiable, exogenous

shocks’’ in seasonally adjusted data to account for the bulk of the US business cycle (Cochrane, 1994).
33According to the economic model presented in Section 3 the relative contributions of seasonal shocks

to the business cycle depends on the variance ratio of seasonal disturbances and nonseasonal disturbances,

s2s=s
2
g: So for larger s2s ; not only is the business cycle larger, but also is the fraction of the business cycle

due to seasonal shocks.

A good empirical example is the comparison of housing starts and GDP. In terms of growth rates, the

volatility of housing starts is 43 times that of GDP. For both series, seasonal movements account for about

95% of the total variance. The contribution of seasonal shocks to business cycle fluctuations, however, is

70% for housing starts, and only 48% for GDP. This suggests that large seasonal cycles give rise to large

business cycles not only in absolute terms, but also in relative terms.
34This point has also been made by Chatterjee and Ravikumar (1992), and Braun and Evans (1995,

1998). More recently, Benhaibib and Wen (2000) show that by allowing for aggregated demand shocks a

Y. Wen / Journal of Monetary Economics 49 (2002) 1289–13141312



concerning the business cycle ought to address seasonal fluctuations seriously. In
other words, in addition to trying to determine whether it is monetary, technology,
or other types of shocks that cause business cycles, we should be looking at what
causes seasonality.

While I find this simple exercise to have been worthwhile, I also believe that
further work is needed, especially to validate and to refine the definition of seasonal
shocks. One specific extension is to find a way to identify the demand-side seasonal
shocks (e.g., the ‘‘Christmas’’ effect) and the supply-side seasonal shocks (e.g., the
weather effect). Research along this line can help address welfare questions regarding
the issue of smoothing seasonal cycles. If seasonal cycles are largely demand driven,
clearly the welfare gains from smoothing them are very different as compared to
when they are largely supply driven.
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